
Agilent Technologies

Introduction

Liquid chromatography triple quadrupole mass spectrometry (LC/MS/MS) is ideally suited for the rapid analysis of multiple analytes. A highly sensitive and specific LC/MS/MS analytical method has been developed for the quantitation of ethyl glucuronide and ethyl sulfate. A dilution procedure and a solid phase extraction (SPE) procedure are evaluated and compared based on ease of use, analyte recovery and post-extraction cleanliness.

Calibrators were created by spiking synthetic urine (Surine-Cerilliant) with various concentrations of EtG and EtS standards (Cerilliant). The chromatographic system consists of a Polaris 3 C18-Ether column coupled with a guard column and a mobile phase comprised of acetonitrile and water containing 0.1% formic acid. Quantifier and qualifier transitions were monitored. EtG-D5 and EtS-D5 internal standards (Cerilliant) were included to ensure accurate and reproducible quantitation. Urine controls (UTAK Laboratories) were used and samples were kindly supplied by collaborators. The separation of EtG and EtS from isobaric interferences is especially critical; without proper separation by retention time, impurities present in both compounds can cause interferences with one another and lead to inaccurate quantitation.

Experimental

Sample Preparation

Simple dilution and solid phase extraction (SPE) were investigated for robustness and sensitivity. Protein precipitation was also evaluated (data not shown), but did not show a significant improvement over either simple dilution or SPE.

Dilution Procedure:

Vortex and centrifuge urine. Transfer 50 µL of supernatant to a clean tube. Add 450 µL of ISTDs solution (200 ng/mL in 0.5% formic acid in H20).

SPE Procedure:

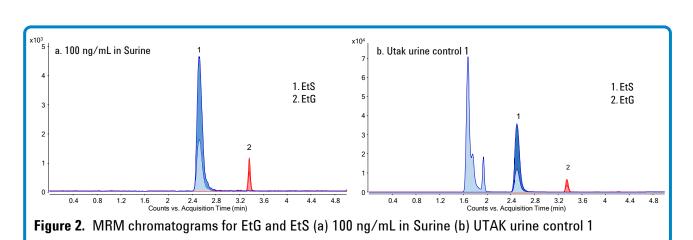
Combine 100 µL of urine, 50 µL of ISTDs (4000 ng/mL in water), and 850 µL of water

- 1: Condition SPE cartridge (BondElut SAX 200 mg 3 cc, Agilent PN: 12102126) with 2 mL of MeOH followed by 2 mL of water
- 2: Add sample
- 3: Wash with 1 mL of acetonitrile. Dry at full vacuum for 5 minutes
- 4: Elute with 2 mL of 5% formic acid in methanol (to elute EtG) and 2 mL of 2% HCl in acetonitrile (to elute EtS). Apply vacuum 5" Hg for 60 seconds.

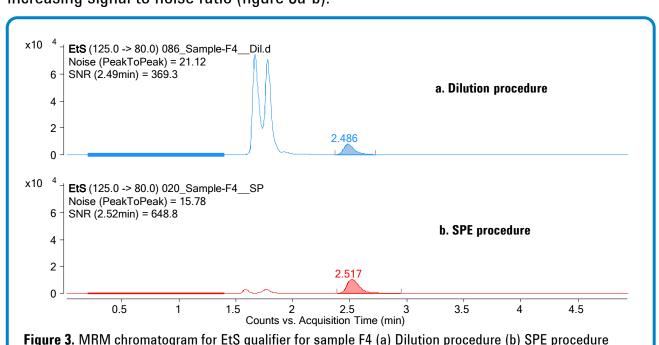
Evaporate with nitrogen at 40°C and reconstitute with 1 mL of 0.5% formic acid in water LC Method

Agilent 1290 HPLC binary pump, well plate sampler with thermostat, temperaturecontrolled column compartment

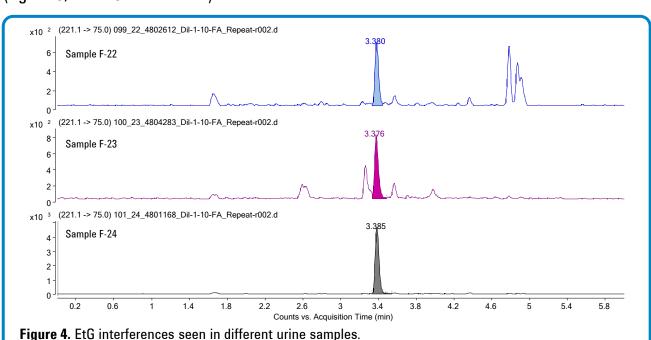
Parameter	Value		
Analytical Column	Agilent Polari	is 3 C	18-Ether, 3x150mm, 3µm, PN: A2021150X030
Guard Column	Agilent Polari	s 3 C	18-Ether MetaGuard 2 mm, 3µm, PN: A2021MG2
Injection Volume	20 μΙ		
Needle Wash	1:1:1:1 MeOH	:ACN	I:IPA:H2O + 0.1% formic acid in Flush port for 15 seconds
Mobile Phase A	Water + 0.1 %	6 Forr	mic Acid
Mobile Phase B	Acetonitrile +	0.1 %	% Formic Acid
Pump gradient	Time (min.)	%В	Flow (mL/min.)
	0.0	0	0.5
	3.5	15	0.5
	4.0	98	0.7
Stop Time	6.0	98	0.7
Post Time	2 min.		

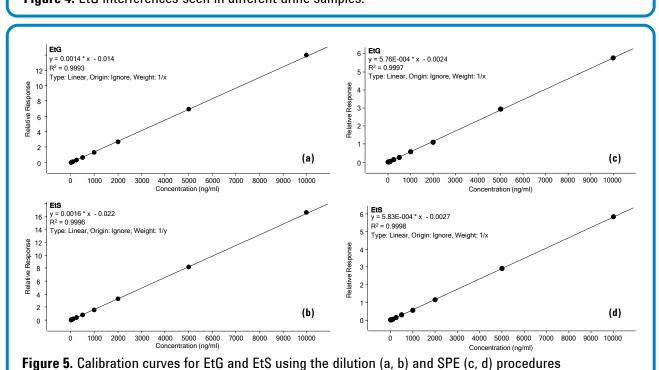

Table 1. LC Parameters

MS Method	
Agilent 6460 QQQ with Jet	Stream technology
Ion mode:	AJS ESI(-)
Drying gas:	300 °C, 5 L/min
Nebulizer gas pressure:	40 psi
Sheath gas:	400 °C, 12 L/min.
Capillary voltage:	2500V
Nozzle voltage:	1000V
Q1/Q3 Resolution:	0.7 unit
Delta EMV:	500V


Compound	Prec Ion	Prod Ion	Dwell	Frag (V)	CE (V)	CAV (V)
EtG*	221.1	75	20	110	12	5
EtG	221.1	85	20	110	12	5
EtG-D5	226.1	75	20	110	12	5
EtS*	125	96.9	40	90	14	5
EtS	125	80	40	90	34	2
EtS-D5	130	98	40	90	14	5
Table 2: MR	M Transitio	ns table (*(Quantifi	er)		

Results and Discussion


The primary objective for method development was to achieve chromatographic resolution between EtG. EtS. and various isobaric interferences in order to achieve accurate quantitation at lower analytical sensitivities. When analyzing EtG/EtS in synthetic urine, no major interferences observed (figure 2a). However, real samples and controls (figure 2b) show major interferences for the EtS qualifier transition.



The same interference is observed in all samples at various intensities. The SPE procedure removes most of this interference while reducing chemical noise and increasing signal to noise ratio (figure 3a-b).

Depending on the sample, several interfering peaks can be observed in any of the EtG/EtS transitions. The proposed LC/MS method is capable of resolving all of these interferences chromatographically (figure 4), producing excellent quantitative results (figure 5, table 3 and table 4).

	Dilut	ion procedure			SP	E procedure	
Compound	R ²	Conc. (ng/mL)	Accuracy (%)	Compound	R ²	Conc. (ng/mL)	Accuracy (%)
		25	119.8			25	109.2
EtG	0.9993	500	92.6	EtG	0.9998	500	95.7
		10000	101.1			10000	100.2
		25	119.5			25	112.5
EtS	0.9996	500	95.3	EtS	0.9997	500	99.1
		10000	101.0			10000	100.5
Table 3. Accuracy	of the diluti	on procedure		Table 4. Accuracy	of the SPE p	procedure	

Results and Discussion

Matrix effects and SPE recovery

Absolute ion suppression and matrix effects were determined for the dilution procedure (table 5). Matrix effects, recovery efficiency and process efficiency were determined for the SPE procedure (table 6). All effects were compensated for by the internal standards.

Compound	Mat effects %			Accuracies % Ds corrections**	(n = 9)
	Average	SD	Range	Average	SD
EtG	101.8	6.4	91.7-119.8	100.0	9.1
EtS	72.3	2.5	91.5-119.5	99.4	8.3
Table 5. Matrix effects for dil	ution procedure		•		

Measurements done at 9 different concentrations ranging from 25 to 10000 ng/mL * Peak areas from urine spiked compared with H2O spiked solutions

* Calculated concentrations of urine spiked with ISTD corrections versus theoretical concentrations

Compound	Matr effects %		Recov efficiency %	•	Proce efficiency %	
	Average	SD	Average	SD	Average	SD
EtG	91.6	8.3	92.6	3.6	84.7	7.7
EtS	98.2	3.4	77.5	3.7	76.1	4.2

Table 6. Matrix effects, recovery efficiency and process efficiency for SPE procedure

Matrix effect % = B/A *100 Recovery efficiency % = C/B *100 Process efficiency % = C/A *100 A: neat standard solutions B: surine extracted then spiked (post-ext) C: surine then extracted (pre-ext)

Accuracy, reproducibility and sample results

Commercially available quality control (QC) materials (UTAK) were used to measure the precision of this method. Results (table 7) show excellent precision at both levels and for both sample preparation procedures. Forty urine samples were processed in parallel by the dilution and SPE procedures. Raw data is shown in table 8 and correlation between the two procedures are shown in figures 6 and 7.

		Lev	el 1			Lev	rel 2	
Compound	Dilution Measured (ng/mL) n=3	CV (%)	SPE Measured (ng/mL) n=6	CV (%)	Dilution Measured (ng/mL) n=3	CV (%)	SPE Measured (ng/mL) n=6	CV (%)
EtG	475.8	4.0	460	5.3	1737	1.6	1772	3.1
EtS	236.9	2.5	234.4	3.4	898.1	1.1	896.4	2.8
Table 7. Results of U	TAK controls b	y LC/MS	/MS					

	- 1	EtS (ng/mL)		E	tG (ng/mL)	
Name	SPE	Dilution	% Diff.	SPE	Dilution	% Diff.
Sample-F1	352.4	352.2	0.1	1288.1	1127.0	13.3
Sample-F2	750.7	728.9	3.0	1148.0	1156.4	-0.7
Sample-F3	379.2	391.4	-3.2	347.7	374.2	-7.4
Sample-F4	395.4	401.8	-1.6	526.3	443.7	17.0
Sample-F5	501.0	487.8	2.7	1231.4	1364.8	-10.3
Sample-F6	553.2	548.0	1.0	1169.5	968.2	18.8
Sample-F7	666.2	689.3	-3.4	932.9	785.0	17.2
Sample-F8	306.8	331.4	-7.7	1278.1	1310.1	-2.5
Sample-F9	559.8	570.0	-1.8	512.2	431.6	17.1
Sample-F10	203.8	223.3	-9.1	986.9	997.5	-1.1
Sample-F11	684.0	705.8	-3.1	778.9	685.2	12.8
Sample-F12	905.8	871.7	3.8	718.2	693.2	3.5
Sample-F13	262.4	267.3	-1.9	372.7	413.6	-10.4
Sample-F14	261.0	286.5	-9.3	417.5	395.6	5.4
Sample-F15	181.5	200.5	-9.9	177.1	183.8	-3.7
Sample-F16	130.7	140.6	-7.3	229.7	222.1	3.4
Sample-F17	646.9	621.5	4.0	1695.0	1417.4	17.8
Sample-F18	328.0	350.2	-6.5	550.1	644.0	-15.7
Sample-F19	368.0	403.1	-9.1	303.0	287.4	5.3

202.7

1789.5

1852.1 2021.4

-1.2

-6.5

-23.8

292.2

206.6

52.3

689.4

581.6

-2.1 3191.3

-2.9 6586.6 5678.8

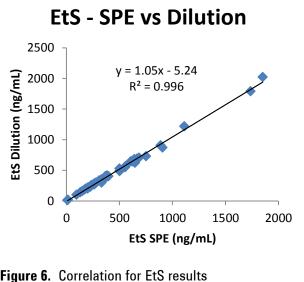
-8.7 6986.7 5957.8

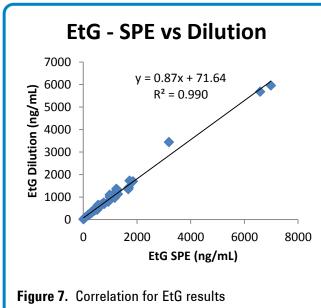
322.9

201.4

13.7

52.9


3440.4


-10.0

-27.3

1.0 2.8 -11.6

14.8

Conclusions

A method has been developed for quantifying ethyl glucuronide (EtG) and ethyl sulfate (EtS) in urine for clinical research. Two sample preparation procedures consisting of a simple dilution from urine and SPE are shown. Chromatographic separation of all analytes and interferences with conditions compatible with LC/MS/MS have been developed. Typical analytical method performance results are well within acceptable criteria. For Research Use Only. Not for use in diagnostic procedures.